代名詞 10 Posted February 22, 2008 Report Share Posted February 22, 2008 1.k是實數 方程式3^2x-(2k+2)3^x-(k-1)=0有兩相異實根 求k之範圍?2.求正實數a之範圍 使x^2-2ax+a^a=0有實根第一題我嘗試用t=3^x代換來算 不過失敗了... 不能當一般方程式來分解... 該怎麼處理上面的指數? Link to post Share on other sites
我是福氣 10 Posted February 22, 2008 Report Share Posted February 22, 2008 1. 令t=3^x,則方程式變成t^2-(2k+2)x-(k-1)=0,因x有兩相異實根,故t有「兩相異正根」,由判別式>0配合根與係數的關係就可以......:)2. 題目有誤吧?你寫的式子好像......不是方程式:( Link to post Share on other sites
C.K. 10 Posted February 22, 2008 Report Share Posted February 22, 2008 1.k是實數 方程式3^2x-(2k+2)3^x-(k-1)=0有兩相異實根 求k之範圍?2.求正實數a之範圍 使x^2-2ax+a^a有實根第一題我嘗試用t=3^x代換來算 不過失敗了... 不能當一般方程式來分解... 該怎麼處理上面的指數?這感覺不是方程式耶= =|||我是變傻了嗎 = =??有看沒有懂我是指第二題 Link to post Share on other sites
代名詞 10 Posted February 23, 2008 Author Report Share Posted February 23, 2008 那題沒錯...就是a的a次方不知道是否題目出錯= =|| Link to post Share on other sites
代名詞 10 Posted February 23, 2008 Author Report Share Posted February 23, 2008 1. 令t=3^x,則方程式變成t^2-(2k+2)x-(k-1)=0,因x有兩相異實根,故t有「兩相異正根」,由判別式>0配合根與係數的關係就可以......:)(這樣講我就懂了 謝謝因為3^x必大於0對吧... Link to post Share on other sites
weiye 10 Posted February 23, 2008 Report Share Posted February 23, 2008 那題沒錯...就是a的a次方不知道是否題目出錯= =||不知最後有否漏掉 =0 ? Link to post Share on other sites
代名詞 10 Posted February 23, 2008 Author Report Share Posted February 23, 2008 啊 抱歉 原來是少加了=0 Link to post Share on other sites
weiye 10 Posted February 23, 2008 Report Share Posted February 23, 2008 2.求正實數a之範圍 使x^2-2ax+a^a=0有實根因為 x 的一元二次方程式有實根,所以判別式≧0所以 (-2a)^2 - 4 a^a ≧ 0 → a^2≧a^a因為 a 是正實數,所以把 a 分成下面三段來討論: (i) 若 0<a<1 ,則 a^2≧a^a → 2≦a (不合) (ii) 若 a=1 ,則 a^2≧a^a 會成立, 故 a=1 可以 (iii) 若 a>1 ,則 a^2≧a^a → 2≧a ,故 1<a≦2 可以所以,1≦a≦2 Link to post Share on other sites
Recommended Posts
Please sign in to comment
You will be able to leave a comment after signing in
Sign In Now