【數學】32=0?


Recommended Posts

對了,我曾用-5和1帶入a過...得到兩根分別是2,3和0,-1

參考一下吧...

恩~這樣是有有理根啦

不過...

我想一下,你指的完全平方數=完全平方式?

其實我想講的是

a^2+4a-4 ≧0且為完全平方數

有點問題

也就是說我覺得

把(2)改一下

ax^2+b^x+c=0且b^2-4ac=0

此時可以說

ax^2+b^x+c=0

這個式子是平方式的某倍數

你知道我在講什麼嗎...

其實這我覺得難表達啦

SORRY:p

鏈接文章
分享到其他網站

我再補一下好了

a^2+4a-4那段

認定他是完全平方數這沒問題

然後此時a已經不是變數了

要滿足b^2-4ac=0的話

大於等於要剛好是等於吧

如果此式剛好在等於0時,有等根

才會符合吧...

不知道這補的有沒有用

我都快被自己搞混啦  哈!

︿︿

鏈接文章
分享到其他網站

雖然笨笨的我還是不太清楚你再說什麼(sorry啦...),不過真的非常謝謝你這麼熱心的回應。

後來有人跟我說我證明了一件事:對於所有a,x2+ax-a+1=0 之根不恆為有理根,a2+4a-4不恆為完全平方數,故b2-4ac無解...

另外我問到,若要找尋二次式 a^2+4a-4 為平方數之a,則a^2+4a-4=z2 => (a+2)^2 - z^2 = 8

=> 兩平方數差為8者只有9與1 => z=1; a+2=3 => a=1;

故 x^2+ax-a+1=0 之根為有理數 => a=1

還有,我錯在我把a當作是定植而非變數...

這才恍然大悟...

但還是真的很謝謝妳喔!

鏈接文章
分享到其他網站

請登入後來留意見

在登入之後,您才能留意見



立即登入