john668 10 發表於 January 29, 2007 檢舉 Share 發表於 January 29, 2007 函數f(x)=1/2(cos10x-cos12x),x為實數 則下列何者為真?(1)f(x)=sin11xsinx 恆成立(2)|f(x)|<=1 恆成立(3)f(x) 最大值是1(4)f(x) 最小值是-1(5)f(x)=0 的解有無限多個--------------------------------------------------------------------------(1)由和差化積沒問題 ,(2)利用(1)的答案也沒問題(5)只要其一為0就可以 所以無限但(3)(4)怎麼解呢? 鏈接文章 分享到其他網站
00 10 發表於 January 30, 2007 檢舉 Share 發表於 January 30, 2007 你已經解出(2),再來只要找出(證明存在)x使的f(x)等於1以及-1即可。 鏈接文章 分享到其他網站
john668 10 發表於 January 30, 2007 作者 檢舉 Share 發表於 January 30, 2007 利用正餘弦函數的疊合可求MAX和min。不會疊= = 你已經解出(2),再來只要找出(證明存在)x使的f(x)等於1以及-1即可。一直只想到代數字或什麼怪怪的解法忘記原來直接解就可以了~ 另sinx=1 求解就可以證明另外一數不可能同時為1~ 謝囉 鏈接文章 分享到其他網站
清風明月 10 發表於 January 30, 2007 檢舉 Share 發表於 January 30, 2007 這個疊的出來嗎=ˇ=疊合是用在相同角度(因為利用和角公式)這個角度不一樣 而且都是cos...... 鏈接文章 分享到其他網站
清風明月 10 發表於 January 30, 2007 檢舉 Share 發表於 January 30, 2007 另外如果要找出確切的極大極小值 可以使用微分f(x)=sin11xsinxdf(x)/dx=cos11xsinx+sin11xcosx=sin12x當有極值存在時 sin12x=0x=kπ/12 (k為整數)帶回原函數 得到極大值是[sin(π/12)]^2(應該......沒錯吧?) 鏈接文章 分享到其他網站
清風明月 10 發表於 January 30, 2007 檢舉 Share 發表於 January 30, 2007 啊 我算錯了ˊˇˋ最小值是-1 最大值......[sin5π/12]^2....? 鏈接文章 分享到其他網站
john668 10 發表於 January 30, 2007 作者 檢舉 Share 發表於 January 30, 2007 另外如果要找出確切的極大極小值 可以使用微分f(x)=sin11xsinxdf(x)/dx=cos11xsinx+sin11xcosx=sin12x當有極值存在時 sin12x=0x=kπ/12 (k為整數)帶回原函數 得到極大值是[sin(π/12)]^2(應該......沒錯吧?)好像微錯了吧df(x)/dx=11cos11xsinx+sin11xcosx 鏈接文章 分享到其他網站
清風明月 10 發表於 January 30, 2007 檢舉 Share 發表於 January 30, 2007 嗯......難怪怎麼算都不對勁我微分功力弱掉......完了這樣怎麼考試ˊˋ 鏈接文章 分享到其他網站
john668 10 發表於 January 30, 2007 作者 檢舉 Share 發表於 January 30, 2007 嗯......難怪怎麼算都不對勁我微分功力弱掉......完了這樣怎麼考試ˊˋ微分不是還沒教嗎= =? 而且哪會考三角函數微分 鏈接文章 分享到其他網站
a1990314 10 發表於 February 1, 2007 檢舉 Share 發表於 February 1, 2007 三角函數微分我記的有在簡諧運動的時候基本的,雖然不知道原理。 鏈接文章 分享到其他網站
Recommended Posts
請登入後來留意見
在登入之後,您才能留意見
立即登入