大一微積分之請求協助


Recommended Posts

使用到羅比達、夾擠及2倍角

(1)

原式= lim(x->0) (x^2cosx^2- sinx^2)/ (x^2sinx^2)

= lim(x->0) (xcosx+ sinx)/x lim(x->0)(xcosx- sinx)/(xsinx^2)

= lim(x->0) (cosx+ sinx/x) lim(x->0)(xcosx- sinx)/(xsinx^2)

= 2 lim(x->0)(cosx-x sinx - cosx)/(sinx^2+2xsinxcosx)

= 2 lim(x->0)(-xsinx)/(sinx^2+2xsinxcosx)

= 2 lim(x->0)(-x)/(sinx+2xcosx)

= 2 lim(x->0)(-1)/(sinx/x+2cosx)

=2(-1/3)

=-2/3

(2)

原式= lim(x->0) (x^2- sinx^2)/(x^2sinx^2)

= lim(x->0) 2(x- sinxcosx)/2(xsinx^2+ x^2sinxcosx)

= lim(x->0) (1-(cosx^2- sinx^2))/(4xsinxcosx +sinx^2+ x^2(cosx^2- sinx^2))

= lim(x->0) (1-cos2x)/(2xsin2x +sinx^2+ x^2cos2x)

= lim(x->0) (2sin2x)/(2sin2x+4xcos2x+2sinxcosx+2xcos2x -2x^2sin2x)

= lim(x->0) (2sin2x)/(3sin2x+6xcos2x-2x^2sin2x)

= lim(x->0) (4cos2x)/(6cos2x+6cos2x-12xsin2x-4xsin2x-4x^2cos2x)

= lim(x->0) (4cos2x)/(12cos2x-16xsin2x-4x^2cos2x)

= lim(x->0) 4/(12-16xsin2x/cos2x -4x^2)

=4/12

=1/3

可能有誤自己務必再驗算看看。

鏈接文章
分享到其他網站
用泰勒展開式會快的多

使用泰勒展開式,真的快多了,而且不容易錯,謝謝指點

(1)

cosx^2=(cos2x+1)/2

sinx^2=(1-cos2x)/2

cos2x=1-(2x)^2/2!+(2x)^4/4!-…

x^2cos2x=x^2-2x^4+2x^6/3…

原式= lim(x->0) (x^2cos2x+x^2+cos2x-1)/(x^2- x^2cos2x)

= lim(x->0) (x^2-2x^4+2x^6/3…+x^2+1-(2x)^2/2!+(2x)^4/4!-…-1)/(x^2- (x^2-2x^4+2x^6/3…))

= lim(x->0) (x^2-2x^4+2x^6/3…+x^2+1-2x^2+2x^4/3-…-1)/(x^2- (x^2-2x^4+2x^6/3…))

= lim(x->0) (-2x^4+2x^6/3…2x^4/3-…)/(2x^4-2x^6/3…)

= lim(x->0) (-4/3+2x^4/3…)/(2-2x^4/3…)

= lim(x->0) (-4/3)/2

=-2/3

(2)

原式= lim(x->0) (x^2+ cos2x-1)/(x^2- x^2cos2x)

= lim(x->0)( x^2+1-(2x)^2/2!+(2x)^4/4!-…-1)/( x^2-(x^2-2x^4+2x^6/3…))

= lim(x->0)((2x)^4/4!-…)/( 2x^4-2x^6/3…)

= lim(x->0)(2/3-…)/( 2-2x^2/3…)

= (2/3)/2

=1/3

鏈接文章
分享到其他網站

請登入後來留意見

在登入之後,您才能留意見



立即登入