【多項式】因式分解


Recommended Posts

令f(x,y,z) = (x+y+z)^5 - x^5 - y^5 - z^5

f(-y,y,z) = z^5 - (-y)^5 - y^5 - z^5 = 0

同樣的f(-z,y,z) = 0,f(x,-z,z) = 0

也就是當x + y = 0或x + z = 0或y + z = 0時,f(x,y,z) = 0

所以令f(x,y,z) = g(x,y,z)(x+y)(x+z)(y+z)

deg g = deg f - deg (x+y)(x+z)(y+z) = 2

且g(x,y,z) = g(y,x,z) = g(z,y,x) = g(x,z,y) = g(z,x,y) = g(y,z,x) = 0

所以令g(x,y,z) = a(x^2+y^2+z^2) + b(xy+xz+yz)

f(1,1,0) = (2a+b)*2 = 30

f(1,1,1) = (3a+3b)*8 = 240

(a,b) = (5,5)

則 f(x,y,z) = 5(x^2+y^2+z^2+xy+xz+yz)(x+y)(x+z)(y+z)

-

其實這對高中生來說都有點複雜...

不過既然是奧林匹克, 那倒頗正常QQ...

鏈接文章
分享到其他網站
令f(x,y,z) = (x+y+z)^5 - x^5 - y^5 - z^5

f(-y,y,z) = z^5 - (-y)^5 - y^5 - z^5 = 0

同樣的f(-z,y,z) = 0,f(x,-z,z) = 0

也就是當x + y = 0或x + z = 0或y + z = 0時,f(x,y,z) = 0

所以令f(x,y,z) = g(x,y,z)(x+y)(x+z)(y+z)

deg g = deg f - deg (x+y)(x+z)(y+z) = 2

且g(x,y,z) = g(y,x,z) = g(z,y,x) = g(x,z,y) = g(z,x,y) = g(y,z,x) = 0

所以令g(x,y,z) = a(x^2+y^2+z^2) + b(xy+xz+yz)

f(1,1,0) = (2a+b)*2 = 30

f(1,1,1) = (3a+3b)*8 = 240

(a,b) = (5,5)

則 f(x,y,z) = 5(x^2+y^2+z^2+xy+xz+yz)(x+y)(x+z)(y+z)

-

其實這對高中生來說都有點複雜...

不過既然是奧林匹克, 那倒頗正常QQ...

為啥麼要這樣令???

不太了解???

鏈接文章
分享到其他網站
  • 1 year later...

請登入後來留意見

在登入之後,您才能留意見



立即登入