gn00618777 10 發表於 July 31, 2009 檢舉 Share 發表於 July 31, 2009 題目是這樣Let X={1,2,3,4,5}, Y={3,4}, and C={1,3}.Define the relation R onP(X),the set of all subsets of X,as ARB if A∪Y=B∪Y(a)Show that R is equvilence (這題我証出來了)(b)List the elements of [C],the equvilence class containing C.©How many distinct equivalence classes are there?(b)和©我有疑問。 以下是解答(b) ∵ CUY= {1,3}U{3,4}={1,3,4} →[C]={{1},{1,3},{1,4},{1,3,4} 為什麼沒有{3,4} 他也是[C]的等價類阿....? 如果可以能說說這題的意思嗎?©【{}】= {{},{3},{4},{3,4}} 【{1}】= {{1},{1,3},{1,4},{1,3,4}} 【{2}】= {{2},{2,3},{2,4},{2,3,4}} 【{5}】= {{5},{3,5},{4,5},{3,4,5}} 【{1,2}】 = {{1,2},{1,2,4},{1,2,3},{1,2,3,4}} 【{1,5}】 = {{1,5},{1,3,5},{1,4,5},{1,3,4,5}} 【{2,5}】 = {{2,5},{2,3,5},{2,4,5},{2,3,4,5}} 【{1,2,5}】 = {{1,2,5},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}}→ There are 8 equivalence classes in the partition induced by R 這題我更不懂了= = 怎麼沒[{3}] 或者 [{4}]阿.. 我一定等價類沒學好.... 鏈接文章 分享到其他網站
Recommended Posts
請登入後來留意見
在登入之後,您才能留意見
立即登入