FTICR 10 發表於 July 29, 2009 檢舉 Share 發表於 July 29, 2009 設n為質數則滿足:(n-1)!+1=nkex:(2-1)!+1=2=2*1(3-1)!+1=3=3*1(5-1)!+1=25=5*5(7-1)!+1=721=7*103(11-1)!+1=3628801=11*329891(13-1)!+1=479001601=13*36846277(17-1)!+1=20922789888001=17*1230752346353...請問這該如何證明對所有質數成立??? 鏈接文章 分享到其他網站
Xiang 10 發表於 July 29, 2009 檢舉 Share 發表於 July 29, 2009 有一個...不是很好的證法XD(1)Let p is a prime number, A={2,3,...,p-2}. For all x in A, there exists one and only one y in A, such that xy=1 (mod p) and x≠y.ProofLet a,m,n in A, m>n.Suppose a^m-a^n=0 (mod p).a^m-a^n=a^n(a^(m-n)-1)=0 (mod p)Hence, a^n≠0 (mod p) since a≠0 (mod p).So, a^(m-n)=1 (mod p).By Fermat's little theorem, m-n=p-1 since 1<a<p. (contradiction)Fix a in A.For all m,n in A, m≠n, then a^m≠a^n (mod p).Let a^i=b_i (mod p), i in A, then b_i in A.|{b_i|i in A}|=|A|, so for every x in A, there exists i in A such that x=b_i.By Fermat's little theorem, a^(p-1)=1 (mod p).So, for all x=b_i in A, there exists y=b_(p-1-i) in A such that xy=1.Suppose x,y,z in A, y≠z, xy=xz=1 (mod p).Hence, x(y-z)=0 (mod p).y=z (mod p) since x≠0 (mod p). (contradiction)So, there exists one and only one y in A such that xy=1 (mod p) and x≠y. -以上沒有很重要XD, 寫的有點隨便, 也有可能錯重點在下面 - (2)By (1), we know that for all x in {2,3,...,p-2}, there exists one and only one y in {2,3,...,p-2}, such that xy=1 (mod p) and x≠y.So, (p-1)!=(p-1)*1*1*...*1=p-1 (mod p).(p-1)!+1=(p-1)+1=p=0 (mod p) - 基本上就是這樣(汗竟然用了費馬小定理>"<, 應該有好很多的證法其實可以直接用Z_p是finite field去證...不過我忘了怎麼用代數證Z_p是finite field XDDD 鏈接文章 分享到其他網站
FTICR 10 發表於 July 30, 2009 作者 檢舉 Share 發表於 July 30, 2009 感謝以上兩位我有在wiki上找到了(只是有個地方看不太懂@@)本來不知道這叫wilson定理 鏈接文章 分享到其他網站
Recommended Posts
請登入後來留意見
在登入之後,您才能留意見
立即登入