╭ fish ╯ ♂ 10 Posted November 22, 2008 Report Share Posted November 22, 2008 請問一下 歸納法第二原理的內容 加上如何應用 Link to post Share on other sites
Xiang 10 Posted November 22, 2008 Report Share Posted November 22, 2008 從哪看到的名詞啊?話說歸納法不只一種,這邊應該是指數學歸納法(遞迴法)吧?我猜應該是要問一個叫做完整歸納法(complete induction)的東西直接去維基看吧,很詳細(連結點我} Link to post Share on other sites
╭ fish ╯ ♂ 10 Posted November 22, 2008 Author Report Share Posted November 22, 2008 從哪看到的名詞啊?話說歸納法不只一種,這邊應該是指數學歸納法(遞迴法)吧?我猜應該是要問一個叫做完整歸納法(complete induction)的東西直接去維基看吧,很詳細(連結點我}問一下這題目 證明:n≧5,對於所有n為自然數 正方形能分割成n個小正方形 Link to post Share on other sites
shiauji 10 Posted January 28, 2009 Report Share Posted January 28, 2009 樓上說的那題似乎並非從第一個骨排推倒下一個,而是有跳的 Link to post Share on other sites
黃昏Dacapo 10 Posted January 30, 2009 Report Share Posted January 30, 2009 據說高中所學的數學歸納法二型(不知道是不是正式名字)是指:先證n=1,n=2時皆成立,設當n=k,n=k+1成立,證明n=k+2亦成立好像斐波那契數列的一般式可以用這樣證明而上面提到的題目如果要說這樣做的話,就從n=5,n=6開始?但是一開始我就分割不出來了= = Link to post Share on other sites
shiauji 10 Posted January 30, 2009 Report Share Posted January 30, 2009 我認為5好像不可以....除非像是共同組成 ex:4個小正方形組成一個大正方形但4可以 4可以推到7(因為可以把其中一小正方形在切成4個) 7可以推到10....6可以推到9(9當然也可以直接換成9公格) 9可以推到12.... Link to post Share on other sites
源良 10 Posted January 31, 2009 Report Share Posted January 31, 2009 n=5 應該不可能的沒網址存圖,用以下方法解吧.當n=6, 正方形的四邊(順時針方向) 可這樣分: 1 1 1, 1 1 1, 1 2, 2 1(1 1 1的意思是有三個1x1的正方形在這條邊上,1 2就是有一個1x1和一個2x2) n=7, 把正方形分做四等份,再把其中一份再分成四等份即可 n=8, 2 2 1, 1 1 1 2, 2 3, 3 2 (注意畫出來後中間有一個1x1不靠邊的正方形) n>8時用樓上的方法推就可. Link to post Share on other sites
Recommended Posts
Please sign in to comment
You will be able to leave a comment after signing in
Sign In Now